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CONCENTRIC IMPACT OF POINTED BODIES 

I. E. Zababakhin UDC 539.893:62-98 

In [2] the concentric press described in [i] was analyzed for the limiting case of a 
sphere composed of a set of narrow pyramids which occupy the sphere not continuously but with 
a certain porosity K > i (K is the ratio of the volume of the sphere to the total volume of 
the pyramids). Whereas [2] was concerned with the static action of the press, the present 
article deals with the dynamic process of compression in which the pyramids approach each 
other at a certain speed. This question arose as a natural extension of the work described 
in [2]. As before, the entire effect is self-similar, the compression of the material at 
the center of the device is infinitely great and lasts a finite time (until externally re- 
lieved). For the parts in the center not to be destroyed, it is sufficient to assume slight 
linear hardening of~he press material under pressure; experiments [3] show that under pres- 
sure the strength increases considerably. 

Diagrams showing the device at the initial moment and at a later stage are presented 
in Fig. la, b. The pyramids approach the center at the rate uo. In the center there is 
formed a spherical zone of continuous compression whose boundary moves outwards at the rate 
v; behind it a shock wave spreads out from the center at velocity w. We note that the poros- 
ity K = (8/~) a, where ~ is the angle at the vertex of the uncompressed pyramid, and 8 is the 
angle at the vertex of the compressed pyramid. 

Figure 2 shows the path of a lateral particle of the ~yramid up to the closing of the 
gap. Clearly, --ue~ = v(8 -- ~) (uo < 0), whence uo/v = --(~K -- i), which for low porosity 
(K-- i = e << i) gives uo/v =--e/2. 

A qualitative picture of the motion is given in Fig. 3. Until the pyramids close up, 
the material moves at a constant rate (from q to rG); this is followed by a smooth decelera- 
tion along the path from r| to r~. At the shock wave the velocity decreases abruptly but re- 
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mains directed towards the center, and the point approaches the center asymptotically, The 
compression of the material ahead of the shock wave is equal to 6~, behind the shock wave it 
is equal to 62, and in the center it is always infinite, 

We take the density dependence of the pressure for Isotroplc compression in the usual 
form 

poC~ 
p = - <i) 

where p e and ce are the initial density and speed of sound; 6i = Pi/P" The Young!s modu- 
lus E ~ Plc2 but with dependence (1) Pi ~ c, i.e., E ~ p~ or 

E = E06~. (2~ 

Theregion of elasticity of the material in the relative strains ex, t~e diagonal of e , e z is shown 
in Fig, 4. The material does not fail in isotroplc compression, i,e,. on 
the cube and in a narrow elongated neighboring zone. 

In what follows we will represent the compression of the material as a combination of 
isotropic compression (not necessarily slight) and a small elastic deformation. For simpli- 
city we set the Polssonls ratio ~ = 1/3; in this case Ee = pock. 

In Fig. 5 we have shown the initial position and a subsequent position of an element of 
a pyramid (q, dq, a) and (r, dr, ~). The stresses along (p) and across (a) the radius are 
different. Under the pressure p the element is isotropically compressed by a factor @i and, 
at the same time, extended along the arc by the stress p --a. For its new dimensions we ' 
obtain the relations 

dr = dq t 

94 



=q ( I ,-~ 2 p - - ~ ) .  (4) 
Pr == t, ~ . 3 E 

Since a and $ can be arbitrarily small, all the velocities are directed along radii, i,e,, 
the motion in the continuous zone is spherically symmetric and one-dimensional, 

The mass conservation equation takes the form 

K 6 = Oq3/Or 3, (5)  

where 8 is the true compression, which is related to the isotropic compression ~i by the con- 
dit ion 

6i ~ P--(~ 
-- ~ (6) = l +  E 

Euler's equation takes the form 

du , I Op 2 
dt : p Or ! Or (p - -  O) = O. (7)  

We will seek the solution of system of equations (3)-(7) in self-similar form; a s  the 
variable we will take ~ = q/cot. We introduce the dimensionless radius T = r/q and velocity 

u I 0 
e0 e0 at (qq~) = -- ~%'" (8) 

U s i n g  t h e  f a c t  t h a t  Or/Oq -- ~p + ~.~v, f r o m  (5)  we o b t a i n  

&p/d~ = ( t / ~ ) ( i / K 6 ~  2 -- r (9 )  

I n  o r d e r  t o  w r i t e  Eq.  (7 )  i n  t h e  s e l f - s i m i l a r  v a r i a b l e s  we u s e  r e l a t i o n s  (1)~( /4)  D ( 6 ) ,  a n d  
(8)  and  o b t a i n  

dt----t~[K~2~ ~ ~--~ V Or 

3~.a"3/%"/267r' [~_ ( I ), ] 
= 2t K6q~2 ~ n- q~6' , 

3c2KO/4q)7]267/2 (K3/4~3/261/2-- t ) .  
~r (p - -  (~) == 2q 

Finally, Eq. (7)  is converted to the form 

d@ �9 6 ( K - - ~ - - l J t ' K ~ a  -- 2 \ / 2 ; ~  3 Ki3146~/2~1112 ) -- 3Kgl"6712qfi/2(K3I~61i2~ 312-  t) 

d'~ -~ -~ ~ Kl3/,,6~V2c~til 2 ~,2 (10) 
�9 - -  K 6 ~ -  

Using (9), we obtain Eq, (8)for the velocity in the form 

= - -~( l  - -  K6~3)/K6q?.  

Thus the problem reduces to solving the two differential equations (9) and (I0), 

We start by investigating the asymptotic behavior in the center (% + 0), We find the 
solution for q and ~ in the form 

- -  F~ ~, 6 ~ O/~2'k (ll) 

From (9) it follows that in this case 

D(0) = i i K ( l  q- n)F~(0). (12)  

Substituting the expressions for ~ and ~, Eqs. (ii) and (12), in (i0), as ~ § 0 we find that 
the solution exists and that the unknown exponent n must satisfy the relation 

K 1"~ = (t + 2n)/], / l  'i- n, 

which for low porosity (K- i = c << !) gives 
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n = ~/6. 

Thus, at the center in the first approximation 

~ f ( O ) ) . ~ i  ~, 8 ,,~ D(O)!~,~IL 

As was to be expected, the exponent is the same as for the static press. 

It is also possible to find the following approximation for the dependences cP (%) and 
6(X) near the center. Omitting the lengthy calculations, we present only the result for 
small n 

n ;i 2--8n - -  - f  F8 ( 0 ) .  + . . .  
( n FS (0))~2+_8, ~ ), ~o = F(0)  ~" ~ + - i g  + . . .  6 =  

F a (0) K ( i  -+- n) ~3n 

(13) 

The correction with respect to the asymptotic solution is quite small (of the order of 
X~+sn~. i.e. the asymptotic relations hold over a broad region The initial value F(0) de- g ,  , ! 

pends on the velocity ~o; the method of determinlng it is indicated below, 

When K - 1 (continuous sphere)~ the problem can be simplified; in particular, it is 
clear from the equation that behind the shock wave there is a state of rest; i,e., @ and 
are constant. 

We will determine the boundary conditions of the system (9), (I0) on the contact bound~ 
ary of the lateral faces of the pyramids %o = q/clt, ~,(~,) = ~o. ~.(~i) = ~o, It is clear 
from Fig. 2 that 

v i i 
~ o  v - -  u o t - -  uo I' K 

At the moment of contact the element is not compressed: 60 =-i. Moreover 

~ o - -  q - -  q"o _ ~o ~o lrX" 
cot co (q - -  q%) l - -  % - -  ! " ~  - -  t '  

where ~ = ui[co, 

Thus, the solution ahead of the shock wave is obtained by integrating Eqs. (9), (i0) 
with the initial conditions 

~.o = - - ~ o V K / ( - V K  - -  i) ,  % = i / ] / K ,  60 = t. 

At the center, however, only the asymptotic behavior of the solution is known 

(p ~ F(0)~ ~, 6 ~ O(0)/~? '~, 

where D(0) and F(0) are related by expression (12) but the coefficients themselves are still 
unknown. They can be found using the relation at the shock wave. The construction of the 
solution is shown qualitatively in Fig. 6. At the point of intersection of the curves ~(X) 
from the outside and from the center (A2) the following relation should be satisfied: 

p.,. - - P l  = Ol(u.., - -  u O ( w -  u O ,  

the subscript "i" denotes the value ahead of the shock wave, the subscript "2" the value be- 
hind the shock wave. After transformation, with allowance for the fact that 

r r q 

t q t 

o 

- -  q:~'co' P = - - 5 -  = 

we obtain 

3Xz -- -- bl G~" (14) 

The satisfaction of this condition is obtained by trial and error. The dependence ~(%) is 
constructed numerically inward from the contact front, and several ~(%) = F(A)l n curves for 
various values of F(O) are constructed from the center to meet it (see Fig. 6). The sat,s- 
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faction of (14) is tested for the points At, A2~ A~, and the point at which this condition 
is met is selected. In practice this is complicated~ since the angles of intersection in 
Fig. 6 are very small; accordingly we will confine ourselves to considering the case of low 
velocities, for which everything can be solved analytically, 

Before deriving the solution, we will first establish its region of applicability. To 
make sense physically r must be greater than or equal to zero. Moreover, the shock wave 
proceeding from the center should not overtake the pyramid contact front; the minimum impact 
velocity ~, = --~/2 (see Fig. 2). The region of applicability AOB is indicated in Fig. 7. 
Using the smallness of e and ~o, we will calculate the compression of the material 62 at the 
shock wave in this region, We will determine ~2 for the two extreme cases ~o = --e/2 and s = 
0, The straight line OB corresponds to the case when the wave propagating from the center 
travels with the speed of sound ce: i.e., there is no compression and 62 = ~i = i, 

We will now solve the problem in the absence of porosity (c = 0). In this case we know 
the general solution for the velocity potential 

~(r, t) :== [fi(r + cot) -~- /~(r - %Olaf, 

and u = B~/~r. We will determine fx and fa for this case. At t = 0, u = coast = ue. In 
region I ~Fig. 8) there is smooth deceleration, in region 2 a state of rest and ~ ~ ~2 (there 
~/Sr = 0 or $ = const). Without loss of generality, we set ~ = 0 i.e,, f1(r + cet) + 
f~(r -- cet) = 0, which is satisfied only when f~ = --f2 = const. Without loss of generality, 
we set fz = f2 = O. The value of f~ depends on r + c| on crossing the wave 1,2 it does 
not change; i.e., fz = 0 in both regions. It remains to find f2 and ~ in region I, Wehave 
~(r, O)/Br = uo, i,e., ~(r, 0) = uor, fu(r) = r~(r, 0) = uor 2, and consequently, f=(r- 
c,t) = uo(r - Cot) 2 and ~(r, t) = ue(r -- cot)a/r. The velocity in region i 

0, ['2 + -  ~,,t) . , . -  ~,,~)~ ] r (~,,,,21 

T h e  d i s p l a c e m e n t  o f  t h e  b o u n d a r y  up  t o  t h e  w a v e  1 - 2  

QI/eo Q I/co 

S =  u d t  ~: u o , 1 - -  d l  ~:: - ';'_2. ~ Q I "  
O' ( L , ~ r 

The density behind the wave 6u = I-3S/Q I = i-2~o (~o < 0). Knowing ~u on the two boundaries 
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of the region AOB, for the entire region near the coordinate origin we obtain 6z = i-2(~, + 
c/2). Finally, we will calculate the pressure in the compression zone p = (Eo/3)(~ -- i). We 
obtain the relation between the isotropic compression 6 i and the true compression 6 by multi 
plying (3) and (4) and substituting 8q/St from (5) 

~ = ~3/2~3/2K3/4. (15) 

Taking into account the fact that (13) is a quite good approximation of ~(~) and 6(~) and 
using (12), we obtain 6~ ~ = I/[K(I + n)]; substituting this in (15), we have 6 i = (i + e/6)~, 

The pressure at the center is at its maximum before the arrival of external unloading, 
i.e., at time t = (Qi/co)(l - e/2~e) (Fig. 9); QI is the outside radius of the press. For 
this moment k_~_ = q~[Ql(l - E/2~e)]. Using this, we obtain an expression fur the maximum 
pressure pm m~talnable at a point with given q 

, ~+~3~ , ~ i 3  , t - ~  - t  p~,~:.:= I - r - f )  [I -- 2 ~o -- ~ ]  1 q 

We select the porosity K, which i s  limited by the strength of the material, starting 
from the condition of preservation of the integrity of the material in the shock wave. From 
(3)-(5) it follows that 

_ 

S u b s t i t u t i n g  t h e  a p p r o x i m a t e  power - law e x p a n s i o n  o f  6(X) ,  ~(~) and t h e  v a l u e  KX/~ = (1 + 
2 n ) / d l  + n ,  we o b t a i n  

p - - o  3 n e 
E "~Y l + n ~ "  (16) 

The maximum shear stress T = (P -- o)12 should not exceed the shear strength T,. For low 
compression, when E " Eo, the maximum porosity 

~max = 8T,/E0 = 4p,/Eo (17) 

(p, is the compressive strength). 

It follows from (16) that in the entire region behind the shock wave the deformation of 
the material is the same (the shear angle y = ~[(p -- ~)/E] = 6), It should be noted that 
as the center is approached the shear stress increases without bound, and the strength also 
increases strongly with pressure; accordingly the question of failure at the center of the 
press remains open. If the strength "overtakes" the increase in 3, then at e < ema x the 

material will be intact irrespective of the impact velocity ~o. but at e > ema x it will fail 

at any arbitrarily small velocity. In the case postulated in [4] the porosity increases to- 
wards the center and exceeds ema x. With the method of compression described, such a device 
will fail, although in the already loaded state it might exist and withstand higher pressure 
than in our case. We also note that achieving dispersion of the pressure in the analogous 
cylindrical device mentioned in [4] is impossible, since near the axis of the cylinder the 
relative strains are large (Dolnt M in Fig. 4) and the material must fail. 

Taking Cma x in accordance with (17), we can calculate the pressure diagram. Figure i0 

shows the results of the calculations for two values of the strength and the impact velocity 
~,/Eo and ~o), 

We will find the ratios of the dimensions of the impact and static devices Q!/Qs giving 
the same pressure at the same small radii q. For impact 

6 = [1--2(~o q- e/2)l(2Qi/q) ~/~, (18) 

and in the static case 6 = 6,(Q,/q)e/=, where Q, is the radius of the continuous compression 
zone| 6, " I + p,/3Eo is the density at its boundary. 
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For the most favorable porosity Cma x = 4p,/E., 6, = I + s/12, andQs/Qs = ~ ,  (po 

i s  t h e  p r e s s u r e  a t  t h e  s u r f a c e  o f  t h e  p r e s s ) ,  

+= ~+-~)  ,,.(~~ ~ . ,  ( ~ )  

Equating the 6 from (18) and (19), we obtain 

F g 

[ l - -2(~o +.~)](2QI) 2 ==(t-i'--:i~-~) Q 2 (v~_) '~ 

whence 

When z << 1 and [~| << 1 

i.e,, 

2 

In reality, pc/p, < 0.5, i.e., 

2 

QI \ ~2 ) F/- p--~ 
~;-- _~ p-7" 

+ 

[ ( ' ' ' 1 '  - I ' 7 ~  ~ e T a n d  1--2 ~o-;-'~")j ,.~--,e 

% 2 -~*" 
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QI < 0,35e 4":._~oE ' i36 
W 

When ~e =--c/2 (extreme case for our press) this gives QI/Qs < 0.4 and at twice the velocity 

(~o =--E) QI/Qs < 0.06. 

Thus, even for a moderate approach velocity the central unit of the impact device is 
smaller than that of the static press. 

The author is grateful to E. I. Zababakhin for his close interest and useful sugges- 
tions. 
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MECHANISM FOR PLASTIC RELAXATION OF A SOLID IN A SHOCK WAVE 

Yu. I. Fadeenko UDC 534.222.2 

w Model of Phenomenon 

Weconsider plastic relaxation of a solid behind a stationary, plane shock front result- 
ing from above-barrier slip of dislocations. Let the wave be moving in the direction of the 
x axis at a constant velocity D. We employ a coordinate system moving with the wave and we 
consider the state of an elementary plane layer of thickness dx which is stationary in this 
coordinate system. As is usual, we represent the actual dislocation ensemble by four effec- 
tive slip systems of edge dislocations, the planes of which coincide with the planes of non- 
zero principal shear stresses (i.e., they make an angle of ~/4 with the planes normal to the 
coordinate axes). We assume that in any elementary volume and for any slip system, an iden- 
tical number of dislocations of opposite sign is created per unit time. However, the density 
of dislocations of opposite sign will not be the same in the elementary layer dx under con- 
sideration. Indeed, let the dislocation slip velocity be v. Then (from the assumed station- 
arity of the wave) the elementary layer dx crosses identical numbers of dislocations of op- 
posite sign per unit time but it crosses them at different velocities: (D + v//2) and (D -- 
v//~), respectively. Therefore, an excess of dislocations moving in the direction of the 
shock front will be observed in the layer. The relative magnitude of this excess is obvious- 
ly (v/D/2). The effect of an excess of dislocations of one sign is equivalent to the pres- 
ence in the layer dx of an equivalent Smith wall [i] which is the result of discontinuous re- 
laxation because of a change in the principal strains e_ and E by an amount (b/2/Z), where z 
b is the absolute value of the Burgers vector and I is ~he distance between dislocations be- 
longing to a single set in the wall. The structure of a layer with a Smith wall is sketched 
in Fig. i with the dislocation density in the wall being exaggerated by several orders of mag- 
nitude for clarity. To understand what follows, it is important to emphasize that the Smith 
wall moves with a velocity D only in the formal sense; in fact, D is the displacement phase 
velocity of a section in which the dislocation density in the wall has a certain definite val- 
ue whereas the excess dislocations themselves move with a velocity v. Besides the two sets 
of dislocations shown in Fig. i, the wall contains yet another two sets of dislocations which 
are parallel to the plane of the figure so that the total number of dislocations per unit 
area of the wall is 4/I. In the relief region behind the compression wave, the sign of v 
changes and the direction of the Burgers vector for the excess dislocations and for the Smith 
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